rd
“AD-A147 565

UNCLASSIFIED

EXTRACTING EMBEDDED GENERALIZED NETWORKS FROM LINE
PROGRAMMING PROBLEHS(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA G BROWN ET AL. SEP 84 NPS55-84- 8282

/1

1/1

e

Y% s T Y Y,
\\..f-...‘

18

16

SR EE

O of o F¥]
S E F FEPPITH

2l

[l
Iizs s b

WAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A147 565

P

o]

- . 4

EXTRACTING EMBEDDED GENERALIZED NETWORKS

FROM LINEAR PROGRAMMING PROBLEMS r:l'_".;.

by "

Gerald G. Brown T

- Richard D. McBride n
o R. Kevin Wood - ._~::_
(b]
Ll S
— '.:'v;.}
; September 1984 N,
eptember R

ﬁ Approved for public release; distribution unlimited 0
— ‘
Prepared for: "]

.'-_.'..<

Naval Postgraduate School N

Monterey, California 93943 N

............

ey —

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker
Superintendent

David A. Schrady
Provost

Reproduction of all or part of this report is authorized.

Gerald Brown
al Postgrgfuate School
Monterey, California 93943

R. Kevin Wood
Naval Postgraduate School
Monterey, California 93943

Reviewed by:

Vool

@i4n R. Washburn, Chairman
Department of Operations Research

Richars D. McBride :6

University of Southern California
Los Angeles, California 90089-1421 USA

Released by:

LT M
Kneale T. Marshall ™~

Dean of Information and PXdcy
Sciences

0.,

o, v,
L
vt
’ R
v 4."a"ale

e,
’

0
2Te &t

I)
et et

Y U WY T Yy

T T p— —p——— Py

~UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

T Y WU T T rTTy S aren 4

REPORT DOCUMENTATION PAGE BEP O oL b TR
T REFPORT NUMBER 2 OOVT ACCESSION NOLE BECIGIENT'S CATALOG NUMBER |
NPS55-84-020 AD- FI
4. TITLE (and Subtitle) §. TyPg OF REPORT & PERIOD COVERED
Extracting Embedded Generalized Networks from
Linear Programming Problems Technical

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT O ANT NUM ®)

Gerald G. Brown
Richarq D. McBride

| (o]
9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM K ENYT. PROJECY, TASK
N ° € AN A:gaawo K UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School September 1984
Monterey, CA 93943 1. nuun;u; oF PAGES

4. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Office) 15. SECURITY CLASS. (of thie repert)

Unclassified
. [4 RA
e gg'ft D‘\’I'..(tCATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If difterent lremn Repert)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide If y and identify by block ber)

Embedded Networks, Generalized Networks, Computational Complexity, Large-Scale
Optimization

v

20. ABSTRACT (Continue on reverse slde If necessary and identify by block mumber)

‘If a linear program (LP) possesses a large generalized network (GN) subma-
trix, this structure can be exploited to decrease solution time. The problems
f finding maximum sets of GN constraints and finding maximum embedded GN subma-
trices are shown to be NP-complete indicating that reliable, efficient solution
of these problems is difficult. Therefore, efficient heuristic algorithms are
developed for identifying such structure and are tested on a selection of twen-
ty-three real-world probiems. The best of four algorithms for identifying GN

Y.
4

constraint sets finds a set which is maximum in twelve cases and average 99.1%

DD 2% 1473} eoimiow or 1 nov es 13 omsoLETE UNCLASSIFIED
$/N 0102- LF-014- 6601 SECURITY CLASHFICATION OF THis PAGE (When Dave Bnrered)

et
SR
Lt e,
P
e).
SR ST

/

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

3% of the total constraints in these problems. The algorithm for identifying
embedded GN submatrices finds submatrices whose sizes, rows plus columns,
average 96.8% of an LP upper bound. Over 91.3% of the total constraint matrix
was identified as a GN submatrix in these problems, on average. 7'r ., -
T R T SRV SRR TS A T SR

: -
) :y 7 S
PR A SR A A AR e R e ST ; 0,// 2,

o1 P,
onl > 3 e
[]
15t ~ b
Avaiiowd’ *
Ave

L~0f maximum. On average, the GN constraints identified comprise more than 62." |

S N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

,

WY FPN

‘.
A

A
s e

A g e b e R e A A Rar

Extracting Embedded Generalized Networks
from Linear Programming Problems

Gerald G. Brown
Naval Postgraduate School
Montercey, California 93043 USA

Richard D. McBride
University of Southern California
Los Angeles, California 90069-1421 USA

R. Kevin Wood
Naval Postgraduate School
Monterey, California 93943 USA

Abstract

If a linear program (LP) possesses a large gencralized network (GN) subma-
trix, this structure can be exploited to decrease solution time. The problems of
finding maximum sets of GN constraints and finding maximum embedded GN
submatrices are shown to be NP-complele indicating thal reliable, eflicient solu-
tion of these problems is difficult. Therefore, efficient heuristic algorithms arc
developed for identifying such structure and are tested on a sclection of
twenty-three real-world problems. The best of four algorithms for identifying Giv
constraint sets finds a set which is maximum in twelve cases and averages 99.1%
of maximum. On average, the GN constraints identified comprisé more than
62.3% of the total constraints in these problems. The algorithm for identifying
embedded GN submatrices finds submatrices whose sizes, rows plus columns,
average 96.8% of an LP upper bound. Over 91.3% of the total constraint matrix
was identified as a GN submatrix in these problems, on average.

"The act of being wise is the act of knowing what Lo overlook."
William James (ca. 1890)

1. Introduction

Large-scale linear programming (LP) models frequently have sparse
ccefficient matrices with special structure. If special structure can be
identified, it can often be exploiled to reduce the cost cof sclving the LP. "Direct
factorization,” e.g. [13], maintains a partitioning of the rows and/or columns of
all simplex bases. Computations are reduced with respect to standard methods
if special structure can be isolated within the partiticns. “Decompositicn,” e.g.
[14], splits a problem into a master problem and vne or more subproblems. This
technique is most efficient when subproblems consist enlirely of special struc-
ture allowing their rapid sclution. The details of these exploitation schemes will
not be discussed here.

Useful structures found embedded in a subset of the rows and/or coluinns
of an LP constraint matrix include simple upper bounds (at most onc nonzcro
element in each row), generalized upper bounds (GUB) (at most one nonzero
coefficient in each column), and networks (at most two nonzero elements in
cach column). Varieties of embedded networks include the general case, gen-
eralized networks (GN), generalized transshipment networks (GT) (at most one
coc(licicnt not equal to +1), and pure networks (NET) (at most one +1 and onc -1
in cach column).

Simple upper bounds, GUB and NET structures have been exploited in vari-
ous commuereial and experimental oplimization syslems, and cflicienl aulomalic
identification schemes have been developed to find these structures, e.p.,
[4.7.8].

Recent research has produced very efficient specialized simplex algorithms
for solving network problems (Por example, sec |3] for NET, |6} for GN, anid
[6.11] for GT.). This research has, in turn, been exploited Lo develop factorized
oplimization systems which solve general LP probleins with a sel of rows exhibit-
ing NET structure [12], GN structure [18], and GT structure [12,19]. Even more
recently, optimization systems have been tested which use direcl factorization
[19] or primal and/or dual decomposition |14] to exploit embedded GN slrue-
ture.

Now that sofiware is available to selve GN (and GT) problems [6}, it is very
likely that several resevarch groups will exploit GN in various ways in the ncar
future. To support this research, we are interested in efficiently and automati-
cally idenlifying GN structure of the following varieties in general LP coefTicient
malrices:

GNc A subset of LP columns which are GN, or

GNg A subset of LP rows which are GN, or

GNpec An embedded GN within a subset of the rows and columns of 1.P.

Beceause the cfficiency of solving a general LP with CN-expioiting methods is
enhanced if the CN struclure is large, marimum GN slruclures are cur goal.
This leads Lo the maximization problems described below.

Let A={a;] be the mxn coeflicient matrix of LP, and let H={h,;{ be the
associaled 0-1 incidence matrix for A The three maximizalion problems, formu-
leted as integer prozrams, are

M(GN¢): max E c;
J

st Y h,c;<2 forallj
1

Cj € 10,];.

where ¢; is a binary decision variable indicaling inclusion of column j in GNg;
AM(GNR): max) 7y
R 7
st Yhn =2 foralj
1

T, € 0,11,

where 7, is & binary decision variable indicating inclusion of row 2 in GNg; and

e L
RN,
e g" 4 o4

—

.
A atos o

. I"“

¥ g

A -3-
»
M(GNge): max 1 +)¢
RC & 7
n s.t. Y hyre + myc; s2+my forallj
:‘} . i
- 7y, G5 € {0,14,
- where 7; and c; are binary decision variables indicating respective inclusion of
h . row i and column j in GNg ¢, and where m; = z hi; — 2. Note that our definitions
1

of maximum GN factorizations are expressed simply as the sum of the rows
. and/or columns included.

Much work has been done on the development of algorithms to identify spe-
cial substructures in LPs. Previous work in identilying GUB subsets ol con-
straints is well known [4,7]. Brown and Wright [8] have explored ways to identify
NET subsets. Extraction of hidden NET structure with gencral linear transforma-
tions has been discussed by Bixby and Cunningham [2] and by Musalem [20].
{del]'ltiﬁcation of GN row sels and other structures has been proposed by Schrage

21).

The problems of identifying maximum GUB and NET constraint subsets are
NP-complete, and consequenlly, exact solutions cannot be guaranteed to be
obtained quickly. Since GUB and NET constraints are special cases of GN con-
straints, it is to be expected that exact solutions of the GN identification prob-
lems will also be difficult to obtain. We show that the GN identification problems
are, in fact, NP-complete, but also give effective and reliable heuristic algo-
rithms for them.

In section 2, the complexities of the three maximization problems are
investigated. #(GNR) and M(GNpc) are shown to be difficult so, in section 3,
efficient algorithms are developed for finding approximate solutions to these
problems. Four specialized integer programming heuristics are described for
identifying maximal GNg sets. Two of the algorithms are “addition” heuristics
which begin with the empty GNy set and successively add rows while maintaining
feasibility. The other two algorithms are "deletion” heuristics which begin with
an infeasible GNg set and successively delete rows until a feasible set is found.
Algorithm GNRC for #(GNgc) takes as input the GNg set found by any one of the
the GNg heuristics. Then, it successively adds rows which introduce the least
amount of weighted infeasibility and drops those columns where an infeasibility
results. In this way, a sequence of GNg¢ sets is produced and the maximum of
these taken to be the heuristic solution to M(GNgc). After the algorithms are
presented, computational experience is given in section 4.

2. Complexity s

In this seclion we invesltigate the complexity of M{(GN¢), M(GNg), and
M(GNrc). M(GN) is trivially solvable in polynomial time by choosing all columns
with at most two nonzero elements in them; consequently, its complexity will not
be discussed further. The other two problems are more interesting.

Following standard practice, M(GNg) and M(GNgc) will be studied with
respect to their associated decision problems:

D(GNg): Does there exist a set of rows R in H such that, for positive integer
k<m,

|[Rl=k and Y hy<2 forallj? - 3
iR ._:

L

..............
" - - - R

RO R A S At P R S SR N N A et SR A R SR AR St e St g S SPa v ACK St 20 AU IM AL

D(GNR¢): Does there exist a set of rows R and columns C in H such that, for :-‘:_.'_f
' positive integer k <m +n, o

[RI+|Cl2k and Y hy<2 foralljeC?
icR

o S I

Of course, a polynomial algorithm for one of the above decision problems would
imply a polynomial algorithm for the associated maximization problem using,
say, a binary search on the values of k.

We consider the complexity of D(GNgr¢) first. Yannakakis [24] investigated
the problem of finding the least number of nodes which can be delcled from a
bipartite graph such that the resulting induced subgraph has a particular pro-
perty. Restated in terms of the decision problem, he gives the following
theorem on 0-1 matrices as a corollary of his results on graphs.

Theorem 1: Let Q be any class of 0-1 matrices which is closed under permuta-
tion and deletion of rows and columns. Let H be an mxn 0-1 matrix, and let k
be some positive integer, ¥ <m+n. Then, finding an myxng submatrix Hy of H
such that Hp € Q and mg+ng = k is polynomial if the matrices of Q have bounded
rank and is NP-complete otherwisza.

It is assumed above that membership in Q can be determined in polynomial time
for a matrix of bounded size (otherwise, NP-hardness would be implied).

This theorem is impressive in that it handles the NP-completeness question
for 0-1 matrices in a wholesale fashion. The NP-completeness of J{GNg¢) follows
as a simple corollary.

Corollary 1: D(GNgc) is NP-complete.

. Proof: Let Q be the class of 0-1 matrices with at most two 1s in each column. Q
i is obviously closed under permutation and deletion of rows and columns;
matrices of arbitrarily large rank can be found in @ and membership in Q can
be determined in polynomial time. D(GNgc) for the incidence matrix I is
- equivalent to searching for an mgXng submatrix Hy of Il such thal H;eQ and
: mg+ngy > k. Therefore, by Theorem 1, D(GNg¢) is NP-complete. =

; A 0-1 matrix H is represented as a bipartite graph with nodes on one side of

l the bipartition corresponding to rows, nodes on the other side of the bipartition

: corresponding to columns, and an edge (i,j) for each hy; =1. D(GNg)
corresponds to a node-deletion problem with deletions restricted to one side of _

5 the bipartition; Yannakakis’s results do not directly apply since they pertain to o

- node dcletions on either side of the bipartition!. Therefore, we use a problem- o
specific proof to show that D{(GNg) is NP-complete.

i Lemma 1. D{GNR) is NP-complete. 7
. Proof: For ease of representation, D(GNg) will be equivalently stated in matrix o=
notation:

D(GNg): Does there exist a binary m-vector x such that 1x> k and HTx < 2? '.'::

D(GNR) is obviously in NP. We show that it is NP-complete by a transformation
. from the “Exact Cover by 3-Sets" problem [15], as specialized by Garey and :
- Johnson [10]. -
D(X3C): Does there exist a binary p-vector y such that 1ly=g and Ny=1

R Y I
a e

-_——
[¢ L
- .. L- PR I
PPV W S

_a

o
:*
B
R .
S

e

N where N is a 3¢ Xp, 0-1 matrix with exactly three 1s in each column :::7:;
. and at most three is in each row? TN
., - .\
' ! Barthoidi [1] has eddressed this topic, but his results are incomplete. For instance, M
K without additionel restrictions, his Theorem 2 would imply that D(GN¢) is NP-complete. =

R
: o
: B
- -

.. ®
LS)

PRERE]

s e
Y

. A
.."-.._.‘..'. B A IS S S e . IR LI . . N B P 1
...... . . R P TRV SN - - e . T R T R S R R T R T

\ . . . %a Sra e e S ot Y T T P e T LA AL LTI I

‘_. At At e gt A'\“- - N PR P AW P A _._'_LL/._LL'._'A_'..:g e aa’ A" '-_',Ln_ a2 las iy n_.';. PO INPOUAY

»ew

PAEL 1)

. R s v s

RE ST VRN T ST AN A L NG S Sem s s ot oy ——y ——
S RAL A s

a e TNyt AL S S - AR S N "'.",'--.'.-.'.":1
4

For each row i in N with only one 1 or two 1s, augment N with one or two unit ’ J

vector columns e;, respectively. Since none of these columns could be included -

in an exact cover of size g, J(X3C) is equivalent to

D(X3C'): Does there exist a binary vector y' of length p+!l such that 1y =g L
and (B,N)y’ = 1 where E corresponds to ! augrnenting columns? *

By construction of D(X3C'), no set of columns of cardinality less than ¢ could -jf".‘_ll

: ever cover all the rows exactly once let alone more than once. Thus, D(X3C') is D

equivalent to a “minimum cover problem”

D(MC): Does there exist a binary vector ¥y such that 1y < q and (E.N)y’ = 1? N

Let x=1-y. Since each row contains exactly three 1s, D{MC) is equivalent to a I

"maximum uncover problem" T

D(MUC): Does there exist a binary vector X such that 1x>p+l—g and
(EN)x < 27

Since all above transformations are of polynomial complexity, and since D(MUC)]

is an instance of D(GNg), J(GNg} is NP-complete. = o

3. Algorithms

The complexity results of the preceding section indicate that solving
M(GNg) and #(GNg¢) exactly could be very time-consuming. Therefore, heuris-
tic algorithms have been developed for obtaining approximate solutions. We
describe the algorithms for M(GNR) first.

M(GNR) is an integer programming problem of the form maz cx s.t. Ax=b,
X binary, where all data is nonnegative. Thus, integer programming heuristics
seem appropriate for attacking this problem. Two basic heuristic techniques
exist for solving such integer programs which we label “addition” heuristics and
“deletion” heuristics. An addition heuristic begins with the feasible solution x=0
and successively sets to 1 that variable z; which which myopically maximizes
effective profit. The efleclive profit associaled with z; is ¢;/¢;, where g; is a
penalty whose definition varies between heuristics, but which in some way
reflects the units of feasibility used up by setting z; to 1. The addition heuristic
stop: when when no additional variables can be set to 1 without violating feasibil-
ity. A deletion heuristic begins with the usually infeasible solution ¥=1 and suc-
cessively sets to 0 that variable z; which myopically minimizes loss of effective e
profit c;/ ;. Here, ¢; is a penalty which reflects the amount of infeasibility e
currently being contributed by z;=1. The deletion heuristic stops when when a
feasible solution is obtained. o

We have specialized two addition heuristics and two deletion heuristics to

M(GNg). The addition heuristics begin with an emply GNy set and successively '_.{".-‘7
add rows to the set until a maximal set is obtained. The dcletion heuristies e
begin with an infeasible GNg sct consisting of all the rows, and rows are succes-]
sively deleted until a feasible set is obtained. Since a GN; set obtained by dele- :-:-:-:1
tion may not be maximal, a second phase, an addition phase, is appended to o
insure that the set is maximal. To further expand the GNjy sel found, it is possi- N ‘

ble to devise post-maximal techniques similar to the 2-opt, 3-opt and general k-
opt proccdures uscd in traveling salesman heuristics, e.g., [16,17]. Application o
of such techniques was unwarranted, however, since computational results in Ay
section 4 show (hat excellent approximate solutions were obtained using the A g
basic addition and deletion heuristics. 4
The addition heuristics are described by Algorithm (GNRa, with variations
"Greedy” and "Toyoda.” The effective profit associated with adding row i to the 1
CNp set is 1/ RP, where RP,; is a row penalty derived from the current nonmaxi- : }
mal solution, the nonzero elements in the row and fcasibility requirements. s

LY

Thus, at each step of the algorithm, the row with the smallest penalty is added
to the GNi sct. Feasibility is maintaincd by setting to infinity the row penalty of
any row whose addition would cause an infeasibility. In the Greedy variation,
RP; equals the number of nonzero elements in the row if the penalty is finite.
The Toyoda variation is a modification of an integer programming heuristic
developed by Toyoda [23]. In this heuristic, the finite row penalty RF; is based
not only on the number of nonzero elements in the row, but also on how close to
feasibility limits addition of the row would bring the current solution.

The deletion heuristics are described by Algorithm GNRd, with variations
"Dobson” and "Scnju & Toyoda.” In this algorithm, each row has a penalty RF,
which, roughly speaking, indicates how much infeasibility the row is contribut-
ing. 1/ RP; is the loss in effective profit if row i is removed from the GNp set.
Thus, this ualgorithm successively deletes rows with maximum penalty to minim-
ize the loss of efTfective profit.

Dobson [9] analyzes and gives worst-case performance guarantees for an
addition heuristic for integer programs of the form min cx, s.t. Ax>b, O<x<u, x
integer, where all data is nonnegative. By simple substitution of variables, how-
ever, the Dobson heuristic may be interpreted as a deletion heuristic for prob-
lems in the form of M(GNg). Al each deletion step of this heuristic, RF; is the
number of nonzero elemenls in row i which are contribuling to an infeasibility.
If mq is the optimal solution to M(GNg) and mp is the heuristic solution obtaincd
by decletion only, Dé)bson’s worst-case bound on performance is

(m -mp)/(m —my) < 2 1/k where d is the maximum number of nonzero

clements in any row. ThlS is the only performance guarantee known for any of
the heuristics implemented in this paper. Unfortunately, the upper bound on
mg this yiclds is rather weuk in practice (See Table 3.). Any aldition heuristic
may be used as a second phase for a deletion heuristic, but for the Dobson dele-
tion heuristic, we chose the greedy addition heuristic as the second phase since
the definition of RP, is consistent between the two phases.

The second variant of GNRd is a specialization of the heuristic devised by
Senju and Toyoda [22] which those authors label an “effective gradient method.”
For M(GNg), H” maps the set of feasible r values into the n-dimensional hyper-
cube whose sides are of length 2. At every step of the algorithm, given current
mfeasxble solution r, RP,=(H"r-2)* h*, where the jth element of (H'r-2)* is

max {0, Zh,ur._—zi RP;, may be interpreted as the length of the projection of

the vector h! onto the shortest vector extending from the point H'r outside of
the hypercube to the boundary of the hypercube. The modified Toyoda addition
heuristic is used as the second phase of this heuristic.

The {wo algorithms GNRa and GNRd, with their varialions, are oullined as
follows:

o i PN,

P
.,

.‘\ -

- ."A“ .
"rd

.
rh .
ko dald

Algorithm GNRa

Input:

Output:

Comment: The basic algorithm is the "CGreedy" addition heuristic. The modificd

Step 0. "Initializalion”
Initialize:
(@) I=¢andl'=§1,2, ..., mj.
(b) For each column j, a column bound
CBJ' =2
Comment: CB; is the number of elements column j may con-
tain.
(c) For each i€/', a row penalty
RP, = Y 1
av-#o
> Step 1. "Row Addition”
Let BP = RPF; be the smallest row penalty (corresponding to row sel).
If KP < = then
(a) Move s from I' to /.
(b) For each column j such that a,; # 0,
(i) If CB; =0 then for each i#s such that a; #0, let
RP; = e,
(ii) For each i#s such that a; #0, if CB;j=1 then let
RP;, = RP; + 1, else let RP; = o,
{(c) Repeat Step 1.
Step 2. "Termination”
Print Ig = I and STOP.
Fnd of Algorithm GhRa

The LP coeflicient matrix A

A set of row indices / corresponding to the largest GNg set found in
A

"Toyoda” heuristic is obtained by substituting the statement in
square brackets for its predecessor.

B R e A
Tt AT et e St e e e T e e e it T,
A TN Y WL LI 1PN Y PRl A WA ERE V. Y W Sl Sl ST AP S Y

)~ B

.y 3
e e

I e
PR

RS A

Algorithm GNRd

Input: The LP coefficient matrix A

Output: A set of row indices /g corresponding to the largest GNp set found in
A

Comment: The basic algorithm is the “Dobson” heuristic. The “Senju and Toy-
oda” heuristic is obtained by substituting the statements in square
brackets for their predecessors.

Step 0. Initialization”
Initialize:
(a) I=81,2,... , m}and [' = ¢.
(b) For each column j, a column penally
CP=(Y 1)-2

ay »0
tel

Comment: CP; is the number of "excess” elements in column

j-
(c) For eachiel, a row penalty
RP, = Y 1
a;,#0
C l>0

Comment: KF; is number of units of infeasibility which row 1

is currently contributing.

(c) For eachie/, a row penalty 7]

RP, = 2 CF;.
20
5
Comment: RPF; is the sum of excess elements in columns with

| anonzeroentryin rowi.

Step 1. "Row Deletion”
Let RP = RP,; be the largest row penalty (corresponding to row le/).
If kKP > 0 then

(a) Movel from fto /.
(b) For each column j such that a;; # 0

() It CP; =1 [If CP; >0] then, for each i#s such that
ay; # 0, let I(P‘ = RP,; - 1.

(i) Let CP; = CP; - 1.
(c) Repeat Step 1.

Step 2. "Row Addition Penalties™

For each iel’, compute a row penalty
(

——

Y1 ifCPj<Oforalla; # 0
RP, = | agto ! d

o otherwise.

Y (CP; + 3) if CP; <0 for all oy #Ol
RFP; = la,=0

{ o otherwise.

...............................

Step 3. "Row Addition”
Let RP = RP, be the smallest row penalty (corresponding to row se/’).
If P < =, then
(a) Moves from I'to I.
(b) For each j such that a,; # 0, let CP; = CP; + 1.
(c) GotoStep?2.

Step 4. "Termination”
Print /g = [and STOP.

End of Algorithm GNRd

The execution times of the above algorithms and the other algorithms
described in this paper are quite short if proper data structures are used. The
initial computation of the row and column penalties can be made very quickly if
the nonzero entries in each row and column are stored in a linked list. Column
penalties are then updated in a single pass of a row. Because of sparsity, row
penalties can usually be updated in passes through just a few columns.
Efficiency is further improved if row and column partitions are maintained with
an indirect address array which allows contiguous access. Associated with this
mapping array, a second array expresses the inverse map Lo speed updating.

An easily computable upper bound on M(GNg), denoted [/Bp, is useful for
checking the efficacy of the above algorithms. Algorithm UBR is designed for
this purpose. Let A; and A; be a partition of the rows of Aand let z, 2, and 23 be
the solutions to #{GNg) on A A, and A, respectively. If UB, is any valid upper
bound on M(GNg) for A;, then

z2<2;,+2,< UB,; + 2;.

Algorithm UBR iteratively applies the above statement, computing the simple
bound UB, and letting A= A; after each iteration. This is repcated until all
columns of Az have at most two nonzero elements in them at which point 23 is
equal to the number of rows in A;. UBpy is then given by the sum of the UB,
upper bounds found at each iteration plus 2z found at the last iteration. At each
iteration, A is partitioned with respect to that column j having the maximum
numter of nonzero entries. A, is all rows of Awith a; # O and UB, = 2z, = 2 since
column j has only nonzero elements in A,.

Algorithm UBR

Input: The LP coeflicient matrix A
Output: A value UHp, an upper bound on | /Ig].

Step 0. "Initialization”

Initialize:
(a) I=112,...,m}, and UBR=0.
(b) For each column j, a column count
CC;=(¥ 1)
q.‘jaeo
1]

Step 1. "Iterative Partitioning”
Let CC = C(, be the largest column count {corresponding to column 1).

P L . " .= .

B O - - . D LA

. . e e A e e e e e e e et e T e e
PRI G, UL S U T ThJPEE WA WP Wall Sl Welt Wi NOOE Sl Wun Suow W We v -

f . L
St e
PR RPN

‘e
4

« 0o

A
I
"'."'

bl' .
o

Lo
.
]

R
v % .
AN
AP 20 A i U WY

','1"’,/" N
/.'L"a'.'_n

. * ¢
. i‘ . e "
o

.
[

‘l.. "
' S S ORI~

~10- . 1

If CC > 2 then
(a) Let UBgr= UBr+ 2
(b) For each ie/ such that ay # 0,
(i) Delete i from [.
(i) For each j such that a; # 0, update column count letting
cG = CCj - 1.
(c) Repeat Step 1. .
Step 2. “Termination”
Print UBg = UBR + |I| and STOP.

End of Algorithm UBR
Algorithm GNRC, the heuristic for M(GNg¢), is outlined next. Any one of the -
integer programming heuristics described for M(GNg) could be applied to this o

problem. However, these algorithms will normally give only a single answer to
the problem; our algorithm allows the exploration of a complete trajectory of
maximal GNge sets beginning with GNg and ending with GNg. Our algorithm
begins with the set of rows / found in Algorithm GNRa or GNRd and repeatedly .
attempls to expand this set by deleting columns, always saving the largest GNgc -
set found. This approach was suggested by manual analysis of several problems

for which the GNp set is limited by a few key complicating columns. Deleting 1
these columns produced a much larger embedded GNgc set, and motivated ®
development of a new factorization LP code which eflectively exploits GNg¢ B
structure [19]. 3
Algorithm GNRC e
Input The LP coeflicient matrix A and a GNg set Iy, |/g] <m, e.g., /g from 1‘
Algorithms GNRa or GNRd. :-:j-;
Output: A set of row indices /gc and a set of column indices Jg ¢ corresponding v
to the largest GNp ¢ structure found in A -
Siep 0. "Initialization” l:“::.‘:
Inilialize: .
() I=1Ig I'=112... . m} =1, J=112,n}, Igc=1I, and
Jre=J.
Comment: / and J are the current sets of row and column
indices while /p¢ and Jg ¢ store the best sets found. N
(b) For each ecolumn jeJ, a column penalty i
CP; = (2;0 1) -2 "
Comment: These column penalties remain as an artifact of -
Algorithm GNRd and can be defined as input. -
(¢) For eachie/', arow cost N
RG=) 1 R
770
)
Comment: RC; is the number of columns which must be '.'_;'.‘:.-
deleted if row 1 is added to /. o
I
<

Step 1.

Step 2.

Step 3.

-11-

"Column Deletion”
Let BRC = RC; be the smallest row cost {corresponding to row se/l’).

(a) For each jeJ such that ay; # 0,
(i) Let CP; = CP; + 1.
(i) 1f CP; = 1 then delete j from J and for each i€/’ such
that a;; # 0, update row costs letting #G = RC; — 1.

(b) Moves from /' to /.
"Row-inclusion Penalties”
For each ie/’, compute a row penalty
Y, (CPj +1) if CPj<Oforalla; #0
20
RP = {%e
o otherwise

"Row Addition"”
Let RP = RP; be the smallest row penalty {(corresponding to row sel').
If RP <0 then

(a) Move s from [to /.
(b) For each jeJ suchthatay; #0
(i) Let CP; = CP; + 1.
(#) If CP; = O then for each ie/l' such that a; # 0, update
row costs letting R, = RC; + 1.
(c) GotoStep2.

Step 4. "Incumbent Test"

If 7] + |J| > |Irel + |Jrel thenlet Jpc =1 and Jre = J.
Step 5. "Termination”

1f |J} <m, then go to Step 1. Otherwise, print Ig¢, Jr¢ and STOP.
End of Algorithm GNRC

A stronger test, allowing preemptive termination, is possible at Step 5 If
{I| <m and m + |J| > |Ige| + |Jrc|. However, the weaker test permits the
exploration of a complete trajectory for GNp ¢ as discussed above.

Along the lines of UPR, an easily computed upper bound on M(GNgc).
denoted UBp¢, was developed to check the accuracy of GNRC. Partition A as fol-

lows:

A=

Ayl A
Acfl ' AI:.'Z

Let z, 2,, and 25, be the solutions to M(GNR) on A A;; and Agp, respectively, and
let UB,, be any simple upper bound on M(GNg¢) for A;;. Then

Algorithm UBRC computes UBpg¢ by iteratively applying the above statement,
computing the simple bound UB,, and letting A = Ag; after each iteration. This
is repeated until all columns of A;; have at most two nonzero elements in them
at which point z; is equal to the number of rows plus the number of columns in
Ayz. UBpe is then given by the sum of the UB, upper bounds found at each
iteration plus zp; found at the last iteration. If A,, is selected such that it con-
sists of single column and three rows, all with nonzero elements, then
UB,, = z,, = 3. Computational experience has indicated an effective rule for

p S Soe A Soan dmen e T . e = L m e v -

o e
AAD
i m'aatafalare aa

selecting the partition: Among all columns in A having at least 3 nonzeros, select o
that column having the minimum number of nonzeros, and within that column -
select the first three rows with nonzeros in them. If k partitions are carried out e
before Az, becomes a GN matrix, it follows that: -

UBpc = 3k+|Io2) +|J2g| =3k +(|1]=-3k)+(|J|—k) = |I|+]J]|-k.
The last equality is used in computing UBgc.

Algorithm UBKC

m b imata ke

Input: The LP coefficient matrix A
Output: A value UBpge, an upper bound on |Ip¢|+|J/rel.

Step 0. "Initialization"
Initialize:
(@) 7=112,...,m},and UBpe = |I|+]|J].
(b) For each column j, a column count i
L cc;=(Y 1) -

. a0

1t

- Y ” (
L 4 Cowe
1
3

PP WY SRR

% Step 1. "Iterative Partitioning"

’ Let CC =CC, be the smallest column count grealer than 2
a (corresponding to column §).

If no such column exists, go to step 2. Else,

(a) Let UBge= UBprc— 1.
{b) For exactly three 1€/ such that g # 0,
(i) Delete i from /.

(ii) For each j such that a;; # 0, update column count letting
CG = CC; - 1.
(c) Repeat Step 1.

Step 2. “Termination”
Print UBgc and STOP.

Fnd of Algorithm UBR

4. Computatiopal Experience

The algorithms described in section 3 have been implemented in FORTRAN, S
using the X-System [5] as the host optimization package. Table 1 identifies 2O
twenty-three LP and mixed integer programming (MIP) problems which have o
been collected from various sources over the years. Some of these models are e
very well known, e.g., Dantzig’s PILOT and the U.S. Department of Energy’s PAD T
and PIES, and most of them were sent to us because of their difficulty, solution
expense, or outright solution failure on commercial optimization systems. Table
1 shows problem dimensions excluding right-hand sides and objective functions.
Computation times displayed in Tables 2-4 are compute-seconds, accurate to . e
the precision shown, for FORTRAN IV H (Extended) with Optimize(2), run on IBM
3033AP under VM/CMS. -

" - . N . . . P AR S T . te Cm e ot MRS Y .,

et . - v A PRI I - » - . P R I I P “e e T I B R o . S *,

N S O R o R R R R A A RSN R N ST AT VO I VTP LI I T e e e
PRI G 2 . ek AN Y Y91

Table 1. LP/MIP Problem Set

Problem | Constraints | Variables | Nonzero Els. Model
AIR 170 3,040 6,023 Physical Distribution
ALUMINUM 4,045 8,805 27,917 Econometric Production & Distribution
COAL 170 3,753 7,508 National Energy Planning
cuBIC1 657 3,074 15,894 Combinatorics Problem
CUBIC2 2,689 11,905 83,361 Bigger Combinatorics Problem
CUPS 360 818 1,341 Production Scheduling
ELEC 784 2,800 8,462 Energy Production & Consumption
FERT 605 9,024 40,484 Production & Distribution
FOAM 999 4,020 13,083 Production Scheduling
FOOD 4,010 14,409 23,332 Production, Distribution & [nventory Planning
GAS 788 5,541 31,020 Production Scheduling
JCAP 2,486 3,849 9,510 Production & Shipment Scheduling
LANG 1,235 1,425 22,028 Equipment & Manpower Scheduling
NETTING 89 190 388 International Currency Exchange
0DSAS 4,647 4,995 30,832 Manpower Planning
PAD 694 3,297 15,541 Energy Allocation, Distribution & Consumption
PAPER 2,868 5,318 23,746 Econometric National Production
PIES 662 3,011 13,376 Energy Production & Consumption
PILOT 974 2,172 12,927 Energy Development Planning
REFINE 5,220 5,994 40,207 Qil Refinery Model
STEEL 831 1,276 9,808 Econometric Production & Distribution
TRUCK 220 4,752 30,074 Fleet Dispatch (Sct Cover)
WADDING 2,991 15,001 82,708 Multicommodity Prod. & Distribution Planning

Algorithms GNRa and GNRd were used to identify GNg rows with Algorithm
UBR used to give an upper bound on the total number of such rows. To check
accuracy, we attemptled, within budget limitations, to solve exactly the integer
linear programs for M(GNg) in those cases where |/p|<UBg. (We were success-
ful in all but one case, as seen. Times for solving the ILPs averaged 214.1
seconds for those problems solved.) Results for GNRa and GNRd, given in Table 2,
are (a) the size of the optimal GNp set found by the ILP, (b) the size of this set as
a percentage of total problem rows m, (c) the size of the GNp set found by GNR,
(d) the size of this set as a percentage of the ILP optimum, and (e) the time
required by the algorithm. For CNRd, the column labeled | /g| uses the notation
a:b where a is |/g| and b is the number of rows in /g which were gained in the
addition phase of the heuristic. Problems are weighted equally in computing
average percentages in the "Totals"” row of the table. Times listed do not include
input or output.

All GNR variants perform quite well. The addition phase in GNRd did not
often contribute a significant fraction of the GN rows found, but the additional
rows found helped make both GNRd variants slightly better than ecither of the
GNRa variants. The best algorithm on this problem set, GNRd (Senju & Toyoda),
finds an average of 99.1% of the maximum GNp set on those problems which we
can solve exactly. The GNp sets average 62.3% of the total problem rows on
these same problems. GNR computation times are nominal compared with
actual solution times of the seminal LPs and MIPs.

2°2 0 0

)

s

. °
‘et

7
-
-

o
2t
o
el
LY

(‘cg st wnwmndo ¢T) °ajqejlese J0u UOIN[OS [S3eD1PUI YN :310N

LeS €86 2el'le | 6€S 986 18'te | 919 8 86 ' | 1] 168 0ss't2 gE29 200'¢e emog,
L+ gu8 252 |@v e@e 2012 |¥E 668 Lede | L¥ 666 18022 |BEL 1122 ONITGVA
J VYN c9 J YN 89 4 VN 204 4 VN 102 VN VN AoNUL
>4 £06 ey % [Ne(] cey 4 48 gy [*% 248 161% g'is [§5 4 a3ls
get c86 0.0°€ 621 9688 [+ X 9el ¥'86 ¢'601°E [48 ¥66 tott'g 66S az21'e INLITH
¥ 4¢6 i1 4 v LL6 6S¥ 9 440 S6S¥ A £86 [§:14 ey oLy JO0Td
3 986 a2 2 286 ¥az 1 068 cg2 [4 ool gaz [+ 3% 4 £8e S3id
o 4 aLe (778 § v £86 ¥08°1 8¢€ vas 210t | 8¢ 466 L1ER'1 [0 R 4] gea't d3dvd
[N Qgt cal 1 001 cal | 4 001 a2t el 0ot el 9'¢1 cel avd
€9 L6 [N 49 00t B6¥’1 16! c56 199%¢°1 cot S 66 S8'06%°1 | 228 a5t SVSao
J 936 12 0 o086 |3 [+} got el o cot & 608 F7A ONILLLIN
A 001 PiL 4 0ot 1 272 a oot i AT A [+ § 001 ¥iL (- X4 1L ONV]
oo gts 396 e3e gc6 048 v ¥ 68 9:200°1 o¥ 666 220l L0% gl10'1 dvor
| 0ot [| & 0ot (92 It 0o1 G2EL oc 00l €L £6 [T SVO
16 866 [TA 16 266 B80L'E al 001 SIL'S g1 [+0] SN -} PN 4 428 814’ aood
9’ [s]] § 168 9 001 166 T oot 168 U [+14] 4 156 2'S6 166 Nvod
a £88 cB¢% e ceé 288 F4 001 248 e 001 249 c¥8 248 Jad
4 gol 81¢ ¥ 00t 0c¢S e 001 925 [00t 0eS £99 0cS o g
| gL6 cze 1 948 cze /) Qo1 EEB 4} 001 | %% [+)r.) €EE SdnJ
62 S¥6 SGE'Y 0g £¥6 261t (3 4 1686 6L:L21°1 1s c¥6 G2 I6T'l | 0LV o2l 221and
I 816 S62 e [X% £62 [[41 4562 ¥ EE6 8162 [+ A 4 clg 121dNJ
o 001 041 0 0901 041 o 031 01 o 00t 0oLt 001 oLt gy [0
£ 186 6L1°2 eL 866 612 ce 001 ol'¥Ll'e | 28 068 gl'set’'g [e¥S get'e RANIOTV
[+3 001 021 | & 001 041 0 00t 0ul o 001 0Lt 410 0Ll v
suwry oz P [ewy dox fp lewy dox ¥ | swy dox B wy dodU | waiqoid
£paasn miND epofo], wIND uosqo PYND epo£o], » nfusg PUND (nowy

PUND pu® PYND SWiLoSy Jo) 53nsay ‘2 31qel

Results for UBR, given in Table 3, include (a) the size of the optimal GNg set,
(b) the upper bound, (c) the upper bound as a percentage of the ILP optimum,
and (d) the time required to find the upper bound. For comparison, we include
(e) Dobson’s upper bound labeled " UBDR" and (f) that bound as a percentage of
the ILP optimum. Tauble 3 also displays some properties of GNg as found by
GNRd, Senju & Toyoda. These properties include (g), the number of disjoint
embedded GN componcnts, (h) the largest and smallest components, (i) the
number of null columns, and (j) the number of singleton columns. These proper-
ties are of interest since the structure of the embedded generalized network
affects the solution lechniques used in an LP factorization. For example, com-
ponents consisting of single rows may be handled most efliciently without utiliz-
ing a complete generalized network code.

Tablc 3. GNR Features
HM(GNp) Algcritkm UBR Cobson Bound Embedded GNy, Comporents

Problem ILPOpt. | UBg %Opt. Time | YUBDz % Opt. | Tetal Largest Smeallest Null Sing.

(m+n) (m+n) Cols. Cols.
AR 170 170 1C0 .0 170 1C0 1 170+3.040 - [¢] 67
ALUMINUM | 2,198 2.214 1007 1.7 3,798 172.8 145 1,118+3,431 1+1 0 1234
CCAL 170 170 100 .0 170 1C0 1 17C+3,753 - 0 0
CUBIC1 312 324 103.8 2 555 1€0.7 38 150+1.,719 142 124 G112
CUBIC2 1,264 1,332 1054 27 2479 106.1 149 6621 6.084 1+6 353 2,483
CUPS 333 336 1C0) 353 1C6.0 13 cc+1C?2 12+12 72 71
ELEC 520 521 1C0.9 2 705 13.6 14 714408 2+16 18 174
FERT 572 572 1C0 1 €co 1019 1 572+9,024 - 0 1,767
FCAM G651 o057 1IC0 G .0 291 1C42 11 311+1,321 1+1 14 1,161
FCOD 3.716 3720 10901 1 2639 1CG.0 75 1,785+¢7,147 1+4 £72 €.669
GAS 73 71 101 1 1 ca2 642 11 53+4.711 1+2 33 5,18
ICAP 1,013 1031 1018 2 2162 2134 130 11€+4C8 142 g2 1,305
LANG 714 726 101.7 N 1122 157.1 3 704+1,2725 142 189 311
NETTING 72 72 1co .0 81 116 7 17 R0+£C 2¢1 23 gce
OD3AS 1,468 1613 1C0¢ 23 4181 2751 115 701+2,4C3 114 5C7 1,€£3
PAD 122 122 100 .0 558 4975 3 8211,35¢ 8+33 1,733 1,179
PAPCR 1.83% 1.863 1015 4 R7C2 143.7 4C2 235+1,6C1 1+1 67 1,761
PTS 288 ot 102.8 .0 571 1€3.3 35 116+1 €15 142 €26 720
PTLOT 470 4¢0 104 3 .1 ae? 1237 78 17745C3 141 G618 621
Resiho 3d.ico 3.179 1016 8 4769 1023 o7 1,503+ 2.6y 1+1 Sod R.153H
STCEL 43t 458 106.3 1 763 177.C 95 180+541 1+1 i3 c48
TRUCK NA 1C5 NA .1 197 NA 2 69+3,028 1+18 1,703 2.3i5
WADDING 2.211 2,222 105 2 _e66 120.6 3 969+1.1€9 1+1 4,414 5,032

UBR is surprisingly tight, averaging 101.4% of the Lrue maximum, and com-
putation times are nominal. Dobson’s beund is poor, avaraging 203.1% of the
true maximum. The GN components found usually consist of a few large com-
ponents and numercus small components.

3
J
q
]
!

Ny

-16~

LTI T AL

Table 4 gives the results obtained by Algorithm GNRC and Algorithm UBRC.
Since no ILP optimum is known for #(GNgc) in most cases, the items displayed
differ from those items displayed in Tables 2 and 3. The results reported for
Algorithm GNRC are (a) the size of the of the GNg¢ structure found, (b) the time
in seconds required to find the structure excluding input and output, (c) the size
of the GNg¢ as a percentage of the total constraint matrix, and (d) the percen-
tage of of the LP upper bound (UBLPg¢) achicved by the algorithm. The results
reported for Algorithm UBRC are (e) |Ipcl +|/rc| as a percentage of UBp¢, and
(f) the time required to obtain UBrc. For comparison, the last two columns of
the table give the total number of rows and columns obtained for the GNg and
GN¢ problemns. These are the sizes of the embedded GN submatrices when res-
tricted to row submatrices and column submatrices, respectively. Each prob-
lem is weighted equally to compute average percentages in the "Totals" row.

[Table 4. GNg ¢ Results
Algorithm GNRC Alg. UBRC GNp GN¢

Problem |IRcl+IJrel Time Z(m+n) Z UBLPRc | % UBre Time | |Ipl+n |Jci+m

& AIR 3,210 0 100 100 100 0] 3210 3210
ALUMINUM 9,027 136 83.2 91.7 917 23| 890 5508

COAL 3,923 0 100 100 100 0] 3923 3823

CUBIC1 3,365 8 902 99.4 94.8 4 | 3,365 659

CUBIC2 13,098 111 897 9.5 947 64 | 13006 2,600

CUPS 951 0 er2 100 9.7 0 851 713

ELEC 3,322 3 027 9.0 98.3 21 3320 1,042

FERT 9,506 3 097 100 99.9 2| 9508 2362

FOAM 4,971 .1 99.0 100 99.7 1 4,971 1,044

FOOD 18,137 8 985 9.5 99.4 1| 18125 17,860

GAS 5,920 54 935 94.9 94.5 2] 5614 848

JCAP 5,822 55 018 97.7 9.8 2| 4831 5718

LANG 2,139 1.1 804 97.8 90.2 2] 213 1,005

NETTING 262 0 939 97.8 100 2 262 256

ODSAS 7,556 40.0 784 78.0 86.1 12| 68470 5084

PAD 3,621 39 907 8.8 95.3 3| 3419 2418

PAPER 7.388 48 89.9 05.9 06.2 8] 7179 4,005

IES 3,313 95 002 99.5 94.8 2| 328 2241

PIOT 2,645 14 841 95.7 91.8 2| 2634 1,567

RFFINE 9,328 19.3 832 93.8 824 23| 9104 7,729

. STEEL 1,700 8 807 81.5 89.7 2 1,655 1,131
- TRUCK 4,822 5 070 NA 08.3 3| 4 220
¥ WADDING 17,209 83 956 99.7 7.8 1.0 | 17,209 14,451
- Totals 141,321 1181 91.3% 66.8% 856 171 | 133,232 87,582

Nole: NAindicates not available.

GNRC performs very well, also. The algorithm finds a GNg ¢ structure whose
size averages 91.37% of the size of the total constraint matrix. The size of the
structure averages 96.87% of the LP upper bound on those problems for which the
bound was obtained. (Times to obtain the LP bound averaged 315.6 seconds.)
With respect to UBRrc, the GNpe set found averages 95.6%. Thus, the upper
bound provided by algorithm UBRC is only slightly weaker, on average, than the
LP upper bound. 1n addition, UBRC has more than a 400 to 1 computational

C AR~ e i S e s Bt a i i St e Sanks gt S R St
v W e e e O T TS TS T T LY A s T
LI e .-t T et e

i -17-

[T speed advantage over the LP upper bound making it very attractive.

' Additional computational studies have been performed to investigate the
. structures which GNR and GNRC obtain. Figure 1 summarizes this work for
; ELEC, JCAP, PAD, PIES and PILOT. The outer rectangle represents, to scale, the
constraint matrix for cach problem. The area above the dashed line represents
the GNg set found by GNRd, Senju & Toyoda. Within this area are indicated the
connected components found by a simple connectivity algorilhm. As indicated
previously in Table 3, a few large components are typically found together with
numerous small components. The area to the left of the vertical line represents
the GN¢ set. The irregular lines trace the trajectories of the GNp¢ structures
found by GNRC, ranging from GNg on the right to GN¢ at the lower left. From any
point on this trajectory, all rows and columns above and Lo the lefl form a GN
set. The circle indicates the largest GNg¢ structure found on this trajectory.

6. Conclusion

Although GN¢ identification is easy, GNg and GNp ¢ identification is theoreti-
cally diflicult. However, maximal, and often optimal GNg and GNg¢ substruc-
tures can be found in an LP constraint matrix using the heuristic algorithms
developed here. In some problems, large GNp structures can be found, while in
other problems, it is necessary to remove some columns Lo find a large embed-
ded GNp¢ structure. Since execution time is modest for heuristic GN
identification, our algorithms can be applied as a matter of course in general
LPs to seek GN substructures. Evidence from the problem set indicates that
this is well-advised if a GN-exploiting method is available: No members of the
problem set were known, a priori, to contain significant GN structure and yet, in
several cases, GN structure was predominant.

6. Acknowledgements

We would not have begun this research and certainly not have sought the LP
and ILP upper bounds without the support of Glenn Graves. Art Schoenstadt
generously assisted in setting up the problem set for interactive experiments.

R AT N e e e e e T e T e e e L L N
R S SR S N O '-’-".‘ R A e St R N S N, Sy i, Sl, Sy S

-18-

Figure 1. Embedded Generalized Networks

ELEC

. —

GN_COMPONENTS (14)
OGN, (520) === == = = e T t
(528+2,794)

Rows (78 4) e RC
GNC(?.SB) COLUMNS (2,800)

T

Bl

i—
: .

JCAP

GNLCOMPONENTS (130)

1

GNR‘ 1,002)

- (2,380+3,442)
- ROWS (2,486)
GNC(S.ZSZ) COLUMNS (3,849)

...
N A

NN

v -

I".
e '.‘...'.' ORI “'.“' SN D . s '/...‘ .-".."-. "..-'-'v-) "-. -.'.-."‘. -,
N s e e i o i i

L Ta S) Ty RN

re

R

Dy

-19~

Figure 1. (continued)

..............

PAD

GN_(122) <L

_/7
GN, COMPONENTS (3) (365+3,256)

ROWS (694)

GNRC

GNC(\.'(ZZ)

COLUMNS (3,297)

GN,COMPONENTS (35)3

|
GN, (268) [-==--m=m=mm == oo

(342+2,971)

ROWS (662)

GNRC

GNC(I.579)

PILOT

COLUMNS (3,0m)

GN, COMPONENTS (76)

GN_(462) [-===-=-==ccm- S,
(532+2,13)

GNRC

ROWS (979) ——
GNC(593)

..........................
I A A

. LR S A
;‘ T c’ " v' o' o ' f ey 1' s .\- -'AQ AT AT E N N A A

COLUMNS (2,472)

P .
. ' PRI o
- . - .. « Tl tat vt
LR L -

H
P

wlelalL e
L e e
TSNP P

- l"

o &

™~ 0

PRI
ALt

. s
>

LAY

hL
S

'.l

R

-, vy
D
Vi e

F -

e

*.
PO,

10.

11

12.
13.

11

15.
16.

17.

e e, e eele
-t e

A S
O *e "
e e

=20~

References

Bartholdi, J.J., "A Good Submatrix is Hard to Find,"” Operations Research
Letters, 1 (1982), No. 5, 190-193.

Bixby, R., and Cunninghamn, W., "Converling Linear Programs to Network
Problems," Mathematics of Operations Research, 5(1980), No. 3, 321-357.

Bradley, G., Brown, G., and Graves, G., "Implementation of Large-Scale Pri-
mal Transshipment Algorithms,” Management Science, 24 (1977), No. 1, 1-
34.

Brearley, A, Mitra, G., and Williams, H., "Analysis of Mathematical Program-
ming Problems Prior to Applying the Simplex Algorithm,"” Mathematical Pro-
gramming, B (1975), 54-83.

Brown, G., and Graves, G., "'Design and Implementation of a Large Scale
(Mixed Integer, Nonlinear) Optimization System,” presented at ORSA/TIMS
Conference, Las Vegas, Novemnber 1975.

Brown, G. and McBride, R., "Solving Generalized Networks,” Management
Science, to appear April, 1985. Also, Working Paper, FBE Department,
School of Business Administration, University of Southern California (Los
Angeles, CA, August 1981).

Brown, G., and Thomen, D., "Automatic Identification of Generalized Upper
Bounds in Large-Scale Optimization Models,” Management Science, 25
(1980), No. 11, 1166-1184.

Brown, G., and Wright, W., "Automatic Identification of Embedded Network
Rows in Large-Scale Oplimization Models,”" /fathematical Programming, 29
(1984), 41-46.

Dobson, G., "Worst-Case Analysis of Greedy Heuristics for Integer Program-
ming with Nonnegative Data,” HMathemutics of Operations Itescarch, 7
(1982), No. 4, 515-531.

Garcy, M. and Johnson, D., Compiutters and /ntractability: A Guide to the
Theory cf NP-Completeness (W.H. Freeman, San Francisco, 1978).

Giover, F., Hultz, J., Klingman,D., and Stutz J., "Generalized Networks: A
Fundamenlal Computer-Based Planning Tool," Management Science, 24
(1978), No. 12, 1209-1220.

Clover, F. and Klingman, D., "The Simplex Son Algorithm for LP/Embedded
Network Problems,” Math. Programming Studies, 15 (1981), 148-176.

GCraves, G. and McBride, R., "The Factorization Approach to Large-Scalc
Lincar Programming,” Mathematical Programming, 10 (1976), 91-110.

Craves, G, and Van Roy, T., "Decomposilion for Large-Scale Lincar and Mixed
Integer Programming,” UCLA Technical Report, November 1979. Applicd
Mathematics and Optimization, 4 (1978), 103-119.

Karp, R., "Reducibility among Combinatorial Problems,” in Complexity of
Computer Computations, (Pergamon Press, Oxford and New York, 1972).

Lin, 8., "Computer Solutions of the Traveling Salesman Problem," Bell Sys-
tem Tech. Journal, 44 (1965), 2245-2269.

Lin, S. and Kernighan, B., "An Effective Heuristic for the Traveling Salesman
Problem,” Opsrations Research, 21 (1973), 498-5186.

e e S RN L T T T
M '.“'o‘:‘"; AN 'ol'v WA VIR SRR R, TP A R R A A R R YA S LR ALY

B T T S e Y T T LTSN LU
B Y R Y IS UL IR S L T B RN ISP PR S S i e

S S A . PLARE - A it e e et W T . B el e e s aas e e g ———— — v

» -21-

18. McBride, R., "Solving Generalized Network Problems with Side Constraints,”
Working Paper, FBE Department, School of Business Administration, Univer-
sity of Southern California (Los Angeles, CA, September 1981).

19. McBride, R., "Solving Embedded Generalized Network Problems," to appear,
European Journal of Operations Research. Also, Working Paper, FBE Depart-
ment, School of Business Administration, University of Southern California
(Los Angeles, CA, October 1982).

20. Musalem, J., "Converting Linear Models to Network Models,” Ph.D. Disserta-
tion, UCLA (Los Angeles, CA, January 1980).

21. Schrage, L., "Some Comments on Hidden Structure in Linear Programs,” in
H. Greenberg and J. Maybec, eds., Computer-Assisted Analysis and Model

. Simplification (Academic Press, New York, 1981), 389-395.

22. Senju, S., and Toyoda, Y., "An Approach to Linear Programming With 0-1
Variables,” Management Science, 15 (1968), No. 4, B196-B207.

23. Toyoda, Y., "A Simplified Algorithm for Obtaining Approximate Solutions to
Zero-One Programming Problems,” Management Science, 21 (1975), No. 12,
1417-1427.

24. Yannakakis, M., "Node-Deletion Problems on Bipartite Graphs,” S/AM Jour-
nal on Computing, 10 (1981), No. 2, 310-327.

v

]
r oS0 .
Y BRI LN O T

’
P PN
P IV B R e)

e
et
N f

‘ 1
PR
o e
dod

% LRI
e A 2L

T a® e, ® -~ R N S . ot .
« N . o TN T e et o . R . D PEEIL
Ot T N CaP R R P A) P R LN P e I AR

.D ‘. .-! ‘.Q -
. et . ot - . R -
PRI S I A A LS S A A P Y P e g s “\t.n_'.'f._a;z PRI

DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93943

Library

Code 55

Naval Postgraduate School
Monterey, CA 93943

Gerald G. Brown
Naval Postgraduate School
Monterey, CA 93943

Richard D. MeBride
University of Southern California
Los Angeles, CA 90089-1421

R, Kevin Wood
Naval Postgraduate School
Monterey, CA 93943

NO. OF COPIES
2

30

30

30

VISP

